
RR hRR photons
Pablo G. Cámara

Based on P.G.C, L. E. Ibáñez and F. Marchesano,  JHEP 1109 (2011) 110
arXiv:1106.0060 [hep-th]arXiv:1106.0060 [hep th]

Iberian Strings ‘12, Bilbao, 31 January - 2 February 2012



1 Motivation1. Motivation

Semi-realistic string theory compactifications generically lead to 
U(1) gauge symmetries beyond U(1)Y

[Cremades, Ibanez, Marchesano ’02]
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MU(1) ∼Ms
global symmetries

broken by non-perturbative effects to discrete y p
subgroups (e.g. matter parity, baryon triality)

[Berasaluce et al. ’11]

Only detectable at experiments if Ms ~ 1 TeV  (WIMPs)
[Ghilencea et al. ’02]

• Other U(1)’s however may remain massless or very light (WISPs) 
and lead to light hidden U(1) gauge symmetries compatible with 
experiment.



1 Motivation1. Motivation

Light hidden U(1) gauge symmetries are a window of opportunity g ( ) g g y pp y
to hidden sector physics, even at large string scale

[Jaeckel, Ringwald ’10]



1 Motivation1. Motivation

• Hidden U(1)’s are also a possible mechanism for mediating SUSY ( ) p g
breaking in a flavor independent way:

[Langacker et al ’07]
[Verlinde et al. ’07]

FV ∧ C2 FH ∧ C2

L ⊃ 1

2
|dρ+ eAV + qAH |2 U(1)Y = eU(1)V − qU(1)H

U(1)X = eU(1)V + qU(1)H
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• D-branes located ‘far away’ from the MSSM D-brane sector• D-branes located far away  from the MSSM D-brane sector

• Bulk U(1)’s arising from KK reduction of the Ramond-Ramond 
closed string fields        they are generic and have no massless 

matter charged under them
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• D-branes located ‘far away’ from the MSSM D-brane sector• D-branes located far away  from the MSSM D-brane sector

• Bulk U(1)’s arising from KK reduction of the Ramond-Ramond 
closed string fields        they are generic and have no massless 

matter charged under them

It is therefore natural to ask:

• Can RR U(1)’s mix with the hypercharge??

• If so can we compute and ??χ m 0• If so, can we compute      and          ??

• Can we obtain new phenomenological scenarios ??

χ mγ0

p g
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Jc ≡ B2 + iJ =
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T îωî , Ωc ≡ C3 + iRe(CΩ) =
X

N IαI

axions

N = 1 vector multipletsh1,1+

RR U(1) gauge bosons from the expansions:

C
X

( I)
X

Ai f iK T k̂

[Grimm, Louis ’04]

C3 =
X
I

Re(N I)αI +
X
i

Ai ∧ ωi fij = −iKijk̂T k



2 U(1)’s in type IIA compactifications2. U(1) s in type IIA compactifications

D6-brane N = 1 vector & chiral multipletsp

D6-branes wrap special Lagrangian 3-cycles in the CY 

J |πa = 0 , Im(Ω)|πa = 0

MSSM located in this sector Z
Na D6-branes SU(Na)× U(1)a fa = −iNa

Z
πa

Ωc

Deformations preserving sLag parametrized by            adjoint chiral 
multiplets:

b1(πa)

[McLean ’98]

Φj θj + λjφiΦja = θja + λjiφ
i
a



2 U(1)’s in type IIA compactifications2. U(1) s in type IIA compactifications
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Geometric interpretation: We associate to each D6-brane U(1) an 
element πa − σ(πa) ∈ H−3 (M6,R)

Qb =
X
a

nbaQ
a massless π−b =

X
a

nbaNa(πa − σ(πa)) trivial
a a



2 U(1)’s in type IIA compactifications2. U(1) s in type IIA compactifications

U(2)→ U(1)a × U(1)b

U(1)a − U(1)b

U(1) + U(1)b

massless

massiveU(1)a + U(1)b massive

. . .
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fia = Φja

Z
π

ωi ∧ ζj + . . .From the D6-brane CS action:  
Z
πa

Well-defined for massless U(1)’s:  

fi(a−b) = (Φ
j
a − Φjb)

Z
ωi + . . . fib =

Z
Σ

(Jc + F
b
2 ) ∧ ωi

Z
ρj

Z
Σ4



4 Mass mixing4. Mass mixing
We have seen the following U(1) charge assigment:

H+(M R)

H−3 (M6,R) D6-brane U(1)’s

RR U(1)’s

H (M Z) Z Z Z Z

H+
2 (M6,R) RR U(1)’s

Hr(M6,Z) = Z⊕ . . .⊕ Z| {z }
br

⊕ Zk1 ⊕ . . .⊕ Zkn| {z }
Tor Hr(M6)

H1(M,Z) = Z2

∂Σr+1 = kπ
tor
r

Does                                         play a role in U(1) physics??Hr(M6,Z)/Hr(M6,R)( )/ ( )
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2πi

log
£
hol(γ, [πtor2 ])

¤
= L([πtor2 ], [πtor3 ]) =

p

k
mod 1

Linking number  

holonomies:Zk

Non BPS objects in 4d, but stable mod k 

Aharanov-Bohm strings and particles  [Alford, Krauss, Wilczek ’89]



4 Mass mixing4. Mass mixing

A-B strings and particles are the consequence of massive U(1)’s 
hi d d t di t t i St k lbhiggsed down to a discrete        gauge symmetry via a Stuckelberg 
mechanism [Banks, Seiberg ’10]

Zk

We can see this more explicitly, by adding the massive forms which 
correspond to the generators of                                             and Tor H4(M6) ' Tor H3(M6)

d tor k β tor dβtor β kβ tor α 1
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dωtorα = kα
βαtorβ , dβtor,β = −kβαω̃tor,α k = L−1
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We can see this more explicitly, by adding the massive forms which 
correspond to the generators of                                             and Tor H4(M6) ' Tor H3(M6)
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Tor H3(M6) ' Tor H2(M6)

dωtorα = kα
βαtorβ , dβtor,β = −kβαω̃tor,α k = L−1

Expanding C
X

( α) tor Aα torExpanding, C3 =
X
α

Re(Nα)αtorα +Aα ∧ ωtorα + . . .

dC3 = [Re(dNβ) + kβαA
α] ∧ αtorβ + dAα ∧ ωtorα + . . .

Massive RR U(1) gauge symmetries



4 Mass mixing4. Mass mixing

Massless RR U(1)’s Massive RR U(1)’s

H+
2 (M6,R) Tor H+

2 (M6,Z)

H+(M R) H−(M R)H d d lit UCT P i T H+(M Z) T H−(M Z)H+
2 (M6,R) ' H4 (M6,R)Hodge duality: UCT+Poinc.:TorH+

2 (M6,Z) ' TorH−3 (M6,Z)

Intersection number Linking number

Electric charges:  D2 (4d particles) Electric charges:  D2 (4d A-B particles)

g

Zkgauge symmetry gauge symmetry

Magnetic charges:  D4 (4d monopoles) Magnetic charges:  D4 (4d A-B strings)

U(1) Zkgauge symmetry gauge symmetryU(1)

H+
2 (M6,Z)
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Similarly, a D6-brane wrapping the same 3-cycle develops a 
S k lb li i i ld lStuckelberg coupling in its worldvolume, 

−
X

cβb

Z
Cβ
2 ∧ F b2

X
β

Z
R1,3

Therefore, massive RR U(1)’s couple to the same complex structure , ( ) p p
axions than D6-branes do.



4 Mass mixing4. Mass mixing

Massive RR U(1)’s therefore may mix with D6-brane U(1)’s.( ) y ( )

Each linear combination of D6-brane and torsional RR U(1) gaugeEach linear combination of D6-brane and torsional RR U(1) gauge 
symmetries has an element of                      associated to it. Massless 
combinations of U(1)’s are trivial elements in integer homology.

H−3 (M6,Z)

Q0 =
X
a

naQ
a +

X
α

ňαQ
α
RR massless

X Nana
2

([πa]− [π∗a]) +
X

ňαk
α
γ [π

tor,γ
3 ] = 0

Elements which are also trivial in de Rham do not mix with RR U(1)’s
a

2
α,γ
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RR U(1)’s allow for new phenomenological scenarios:
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fY G2
= − 4i

27
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• Two mutualy hidden brane sectors which comunicate via RR photons

U(1) 2U(1) 2U(1) U(1)

Massless:

U(1)Yk ∼ 2U(1)ak − 2U(1)bk + U(1)RR

fY1Y2 6= 0f 1 2 6
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RR U(1)’s may also play a role in the context of F-theory GUT’s:

Hypercharge flux breaking
[Beasley, Heckman, Vafa ’08]
[Donagi, Wijnholt ‘08]

SU(5)→ SU(3)× SU(2)× U(1)

• 2-cycle trivial in de Rham in order U(1) to remain masslessρY• 2-cycle       trivial in de Rham in order U(1)Y to remain masslessρ

If      is a torsional 2-cycle of the CY3ρY
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1
=

3

5
+

k2Y
k2α1 5αSU(5)

+
k2RRαRR

C ld l i th k f t di iCould explain the known few percent discrepancy in 
MSSM gauge coupling unification.



6 Torsion and discrete gauge symmetries6. Torsion and discrete gauge symmetries

One interesting aspect of our analysis is the relation

Discrete gauge symmetries Tor H∗(M,Z)

which is rather universal: in general one can relate a set of discrete g
gauge symmetries with a torsion group by considering the 
corresponding A-B strings and particles.

For instance, for type IIA orientifolds:

U(1)elec. group charged particles cycle axions group

gmμ
dTor H1

+ P Tor H+
1 gij Tor H2

+dBmμ
dTor H1

− F1 Tor H−1 Bij Tor H2
−

Cμ
mn dTor H2

+ D2 Tor H+
2 Cijk Tor H3

+

C mnop dTor H4 D4 Tor H− C Tor H5Cμ
mnop Tor H4

− D4 Tor H4 Cijklm Tor H5
−



6 Torsion and discrete gauge symmetries6. Torsion and discrete gauge symmetries

A particularly interesting case is that of M-theory, since it provides a p y g y, p
unifying picture for D-brane and RR U(1) gauge symmetries.

Massive U(1) gauge symmetries spontaneoulsy broken to discrete 
gauge symmetries arise in this case from Tor H2(M̂7,Z) ' Tor H4(M̂7,Z)

M2-branes wrapping torsional 2-cycles 4d Aharanov-Bohm particles

M5-branes wrapping torsional 4-cycles 4d Aharanov-Bohm strings

dA
³

(d α) k̂α Aβ
´

φtor dAβ torˆ β t t dA3 =
³
Re(dMα) + kαβA

β
´
∧ φtorα + dAβ ∧ ωtorβkα

βφtorβ = dωtorα

In the IIA perturbative limit they become the massive D6-brane and 
RR U(1)’s. 



7 Conclusions7. Conclusions

• We have considered the interplay between open and closed string 
U(1) gauge symmetries.

RR U(1)’s can play a prominent role Mixing with the hypercharge• RR U(1) s can play a prominent role. Mixing with the hypercharge 
can occur either via direct kinetic mixing or via the mass terms 
induced by Stückelberg couplings. Interesting phenomenologicalinduced by Stückelberg couplings. Interesting phenomenological 
implications. 

• We have provided a geometric description of mass mixing in terms 
of the torsional homology of the CY, and developped the right tools 
t t th i i t i ifi d lto compute the mixing parameters in specific models.

• As a byproduct we have provided a stringy realization of discreteAs a byproduct , we have provided a stringy realization of discrete 
gauge symmetries and 4d A-B strings and particles in terms of the 
torsional homology. 


